Equivalent Fractions

Write two fractions that are equivalent to $\frac{2}{6}$.

Step 1 Make a model to represent $\frac{2}{6}$.

The rectangle is divided into 6 equal parts, with 2 parts shaded.

Step 2 Divide the rectangle from Step 1 in half.

The rectangle is now divided into 12 equal parts, with 4 parts shaded.

The model shows the fraction $\frac{4}{12}$. So, $\frac{2}{6}$ and $\frac{4}{12}$ are equivalent.

Step 3 Draw the same rectangle as in Step 1, but with only 3 equal parts. Keep the same amount of the rectangle shaded.

The rectangle is now divided into 3 equal parts, with 1 part shaded.

The model shows the fraction $\frac{1}{3}$. So, $\frac{2}{6}$ and $\frac{1}{3}$ are equivalent.

Use models to write two equivalent fractions.

1.
$$\frac{2}{4}$$

2.
$$\frac{4}{6}$$

Generate Equivalent Fractions

Write an equivalent fraction for $\frac{4}{5}$.

Step 1 Choose a whole number, like 2.

Step 2 Create a fraction using 2 as the numerator and denominator: $\frac{2}{2}$. This fraction is equal to 1. You can multiply a number by 1 without changing the value of the number.

Step 3 Multiply $\frac{4}{5}$ by $\frac{2}{2}$: $\frac{4 \times 2}{5 \times 2} = \frac{8}{10}$.

So, $\frac{4}{5}$ and $\frac{8}{10}$ are equivalent.

Write another equivalent fraction for $\frac{4}{5}$.

Step 1 Choose a different whole number, like 20.

Step 2 Create a fraction using 20 as the numerator and denominator: $\frac{20}{20}$.

Step 3 Multiply $\frac{4}{5}$ by $\frac{20}{20}$: $\frac{4 \times 20}{5 \times 20} = \frac{80}{100}$.

So, $\frac{4}{5}$ and $\frac{80}{100}$ are equivalent.

Write two equivalent fractions.

1.
$$\frac{2}{6}$$

2.
$$\frac{4}{10}$$

3.
$$\frac{3}{8}$$

4.
$$\frac{3}{5}$$

Simplest Form

A fraction is in **simplest form** when 1 is the only factor that the numerator and denominator have in common.

Tell whether the fraction $\frac{7}{8}$ is in simplest form.

Look for common factors in the numerator and the denominator.

Step 1 The numerator of $\frac{7}{8}$ is 7. List all the	$1 \times 7 = 7$ The factors of 7 are 1 and 7.		
factors of 7.			
Step 2 The denominator of $\frac{7}{8}$ is 8. List all the factors of 8.	$1 \times 8 = 8$ $2 \times 4 = 8$ The factors of 8 are 1, 2, 4, and 8.		
Step 3 Check if the numerator and denominator of $\frac{7}{8}$ have any common factors greater than 1.	The only common factor of 7 and 8 is 1.		

Tell whether the fraction is in simplest form. Write yes or no.

1.
$$\frac{4}{10}$$

2.
$$\frac{2}{8}$$

3.
$$\frac{3}{5}$$

Write the fraction in simplest form.

4.
$$\frac{4}{12}$$

5.
$$\frac{6}{10}$$

6.
$$\frac{3}{6}$$

Common Denominators

A **common denominator** is a common multiple of the denominators of two or more fractions.

Write $\frac{2}{3}$ and $\frac{3}{4}$ as a pair of fractions with common denominators.

Step 1 Identify the denominators of $\frac{2}{3}$ and $\frac{3}{4}$.	2 and 3/4 The denominators are 3 and 4. 3: 3, 6, 9, 12, 15, 18 4: 4, 8, 12, 16, 20 12 is a common multiple of 3 and 4.		
Step 2 List multiples of 3 and 4. Circle common multiples.			
Step 3 Rewrite $\frac{2}{3}$ as a fraction with a denominator of 12.	$\frac{2}{3} = \frac{2 \times 4}{3 \times \underline{4}} = \frac{8}{12}$		
Step 4 Rewrite $\frac{3}{4}$ as a fraction with a denominator of 12.	$\frac{3}{4} = \frac{3 \times 3}{4 \times \underline{3}} = \frac{9}{12}$		
So, you can rewrite $\frac{2}{3}$ and $\frac{3}{4}$ as $\frac{8}{12}$ and $\frac{9}{12}$			

Write the pair of fractions as a pair of fractions with a common denominator.

1.
$$\frac{1}{2}$$
 and $\frac{1}{3}$

2.
$$\frac{2}{4}$$
 and $\frac{5}{8}$

3.
$$\frac{1}{2}$$
 and $\frac{3}{5}$

4.
$$\frac{1}{4}$$
 and $\frac{5}{6}$

5.
$$\frac{2}{5}$$
 and $\frac{2}{3}$

6.
$$\frac{4}{5}$$
 and $\frac{7}{10}$

20

Problem Solving • Find Equivalent Fractions

Kyle's mom bought bunches of balloons for a family party. Each bunch has 4 balloons, and $\frac{1}{4}$ of the balloons are blue. If Kyle's mom bought 5 bunches of balloons, how many balloons did she buy? How many of the balloons are blue?

Total Number of Blue Balloons
Total Number of Balloons

	Read the Problem	1					e artic
What do I need to find? I need to find how many balloons Kyle's mom bought and how many of the balloons are blue. What information do need to use? Each bunch has 1 out of 4 balloons that are blue, and there are 5 bunches.		I will make a table to find the total number balloons Kyle's mom bought and the fraction of balloons that are blue.					
	Solve the Problem	1	10150				10/11/04
I can make a table.						200	insi)
Number of	Bunches 1	8	2	3	4	5	

Kyle's mom bought 20 balloons. 5 of the balloons are blue.

Make a table to solve.

- 1. Jackie is making a beaded bracelet. The bracelet will have no more than 12 beads. $\frac{1}{3}$ of the beads on the bracelet will be green. What other fractions could represent the part of the beads on the bracelet that will be green?
- 2. Ben works in his dad's bakery packing bagels. Each package can have no more than 16 bagels. 3/4 of the bagels in each package are plain. What other fractions could represent the part of the bagels in each package that will be plain?

Compare Fractions Using Benchmarks

A benchmark is a known size or amount that helps you understand a different size or amount. You can use $\frac{1}{2}$ as a benchmark.

Sara reads for $\frac{3}{6}$ hour every day after school. Connor reads for $\frac{2}{3}$ hour. Who reads for a longer amount of time?

Compare the fractions. $\frac{3}{6} \bigcirc \frac{2}{3}$

$$\frac{3}{6}$$
 $\frac{2}{3}$

Step 1 Divide one circle into 6 equal parts. Divide another circle into 3 equal parts.

Step 2 Shade $\frac{3}{6}$ of the first circle. How many parts will you shade? 3 parts

Step 3 Shade $\frac{2}{3}$ of the second circle.

How many parts will you shade? 2 parts

Step 4 Compare the shaded parts of each circle. Half of Sara's circle is shaded. More than half of Connor's circle is shaded.

 $\frac{3}{6}$ is less than $\frac{2}{3}$. $\frac{3}{6}$

So, Connor reads for a longer amount of time.

1. Compare $\frac{2}{8}$ and $\frac{3}{4}$. Write < or >.

Compare. Write < or >.

2.
$$\frac{1}{4}$$
 $\frac{8}{10}$

3.
$$\frac{7}{8}$$
 $\frac{1}{3}$

4.
$$\frac{5}{12}$$
 $\frac{1}{2}$

5.
$$\frac{2}{8}$$
 $\frac{8}{12}$

6.
$$\frac{4}{6}$$
 \bigcirc $\frac{4}{8}$

7.
$$\frac{7}{12}$$
 \bigcirc $\frac{2}{4}$

Compare Fractions

Theo filled a beaker $\frac{2}{4}$ full with water. Angelica filled a beaker $\frac{3}{8}$ full with water. Whose beaker has more water? Compare $\frac{2}{4}$ and $\frac{3}{8}$.

- Step 1 Divide one beaker into 4 equal parts. Divide another beaker into 8 equal parts.
- **Step 2** Shade $\frac{2}{4}$ of the first beaker.
- Step 3 Shade $\frac{3}{8}$ of the second beaker.

Step 4 Compare the shaded parts of each beaker. Half of Theo's beaker is shaded. Less than half of Angelica's beaker is shaded.

$$\frac{2}{4}$$
 is greater than $\frac{3}{8}$

$$\frac{2}{4} \bigcirc \frac{3}{8}$$

So. Theo's beaker has more water.

1. Compare $\frac{1}{2}$ and $\frac{1}{4}$.

Which is greater? -

2. Compare $\frac{2}{3}$ and $\frac{3}{6}$.

Which is less? _

Compare. Write <, >, or =.

3.
$$\frac{1}{2}$$
 $\frac{3}{4}$

3.
$$\frac{1}{2}$$
 \bigcirc $\frac{3}{4}$ 4. $\frac{6}{12}$ \bigcirc $\frac{5}{8}$

5.
$$\frac{2}{3}$$
 $\frac{4}{6}$

6.
$$\frac{3}{8}$$
 $\frac{1}{4}$

Compare and Order Fractions

Write $\frac{3}{8}$, $\frac{1}{4}$, and $\frac{1}{2}$ in order from least to	greatest.
--	-----------

Step 1 Identify a common denominator.	Multiples of 8:8,16, 24				
	Multiples of 4: 4,8,16, Multiples of 2: 2, 4, 6,8 Use 8 as a common denominator.				
# X					
Step 2 Use the common denominator to write equivalent fractions.	$\frac{3}{8}$ $\frac{1}{4} = \frac{1 \times 2}{4 \times 2} = \frac{2}{8}$	(34)			
	$\frac{1}{2} = \frac{1 \times 4}{2 \times 4} = \frac{4}{8}$				
Step 3 Compare the numerators.	2 < 3 < 4	98			
Step 4 Order the fractions from least to greatest, using < or > symbols.	$\frac{2}{8} < \frac{3}{8} < \frac{4}{8}$				
So, $\frac{1}{4} < \frac{3}{8} < \frac{1}{2}$.	3 0 0 0	=			

Write the fraction with the greatest value.

1.
$$\frac{2}{3}$$
, $\frac{1}{4}$, $\frac{1}{6}$

2.
$$\frac{3}{10}$$
, $\frac{1}{2}$, $\frac{2}{5}$

3.
$$\frac{1}{8}$$
, $\frac{5}{12}$, $\frac{9}{10}$

Write the fractions in order from least to greatest.

4.
$$\frac{9}{10}$$
, $\frac{1}{2}$, $\frac{4}{5}$

5.
$$\frac{3}{4}$$
, $\frac{7}{8}$, $\frac{1}{2}$

6.
$$\frac{2}{3}$$
, $\frac{3}{4}$, $\frac{5}{6}$